首页> 外文OA文献 >From Convex Optimization to Randomized Mechanisms: Toward Optimal Combinatorial Auctions
【2h】

From Convex Optimization to Randomized Mechanisms: Toward Optimal Combinatorial Auctions

机译:从凸优化到随机机制:走向最优   组合拍卖

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We design an expected polynomial-time, truthful-in-expectation,(1-1/e)-approximation mechanism for welfare maximization in a fundamental classof combinatorial auctions. Our results apply to bidders with valuations thatare m matroid rank sums (MRS), which encompass most concrete examples ofsubmodular functions studied in this context, including coverage functions,matroid weighted-rank functions, and convex combinations thereof. Ourapproximation factor is the best possible, even for known and explicitly givencoverage valuations, assuming P != NP. Ours is the firsttruthful-in-expectation and polynomial-time mechanism to achieve aconstant-factor approximation for an NP-hard welfare maximization problem incombinatorial auctions with heterogeneous goods and restricted valuations. Our mechanism is an instantiation of a new framework for designingapproximation mechanisms based on randomized rounding algorithms. A typicalsuch algorithm first optimizes over a fractional relaxation of the originalproblem, and then randomly rounds the fractional solution to an integral one.With rare exceptions, such algorithms cannot be converted into truthfulmechanisms. The high-level idea of our mechanism design framework is tooptimize directly over the (random) output of the rounding algorithm, ratherthan over the input to the rounding algorithm. This approach leads totruthful-in-expectation mechanisms, and these mechanisms can be implementedefficiently when the corresponding objective function is concave. For bidderswith MRS valuations, we give a novel randomized rounding algorithm that leadsto both a concave objective function and a (1-1/e)-approximation of the optimalwelfare.
机译:我们为组合拍卖的基本类别中的福利最大化设计了一种期望的多项式时间,期望值逼真,(1-1 / e)逼近机制。我们的结果适用于估值为类拟矩阵秩和(MRS)的投标人,其中涵盖了在此背景下研究的次模函数的大多数具体示例,包括覆盖函数,拟阵加权秩函数及其凸组合。假设P!= NP,即使对于已知和明确给定的覆盖率估值,我们的近似系数也是最大可能的。我们的方法是第一个真正的期望值和多项式时间机制,可以在具有异质商品和受限评估的组合拍卖中实现NP硬福利最大化问题的常数因子近似。我们的机制是基于随机舍入算法设计逼近机制的新框架的实例。典型的此类算法首先在原始问题的分数松弛上进行优化,然后将分数解随机四舍五入为一个整数。除极少数例外,此类算法无法转换为真实机制。我们的机制设计框架的高级思想是直接优化舍入算法的(随机)输出,而不是优化舍入算法的输入。这种方法导致了预期中的机制,当相应的目标函数是凹的时,可以有效地实现这些机制。对于具有MRS估值的竞标者,我们给出了一种新颖的随机舍入算法,该算法会导致凹目标函数和最优福利的(1-1 / e)逼近。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号